EFRC NEES Teleseminar - A. Alec Talin

Wednesday, September 20, 2017
4:00 p.m.-5:00 p.m.
2168 AVW & GoToMeeting login (see below)
Elizabeth Lathrop
301 405 7801
lathrop5@umd.edu

NEES Teleseminar Speaker: A. Alec Talin from Sandia National Laboratories, CA

Title: The Non-Volatile Redox Transistor for Neuromorphic Computing

Abstract

Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. In my talk I will describe a non-volatile redox transistor (NVRT): a device with a resistance switching mechanism fundamentally different from existing memristors, based on the concept of reversible, electrochemical reduction/oxidation of a material to tune its electronic conductivity. The first type of NVRT that I will describe is based upon the intercalation of Li-ion dopants into a channel of Li1−xCoO2. This Li-ion synaptic transistor for analog computing (LISTA) switches at low voltage (mVs) and energy, displays hundreds of distinct, non-volatile conductance states within a 1V range, and achieves high classification accuracy when implemented in neural network simulations1.  The second type of NVRT I will describe operates on a similar principle but is based on the polymer system PEDOT:PSS, and which we call the electrochemical neuromorphic organic device (ENODe)2. Plastic ENODes are fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.

References

(1) Fuller, E. J.; El Gabaly, F.; Leonard, F.; Agarwal, S.; Plimpton, S. J.; Jacobs-Gedrim, R. B.; James, C. D.; Marinella, M. J.; Talin, A. A. Li-Ion Synaptic Transistor for Low Power Analog Computing. Advanced Materials 2017, 29, 1604310.

(2) van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Talin, A. A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nature Materials 2017, 16, 414.

Please join my meeting from your computer, tablet or smartphone. 
https://global.gotomeeting.com/join/728708901 

You can also dial in using your phone. 
United States: +1 (646) 749-3112 

Access Code: 728-708-901 

Joining from a video-conferencing room or system? 
Dial: 67.217.95.2##728708901 
Cisco devices: 728708901@67.217.95.2 

 

 

Audience: Graduate  Faculty  Post-Docs 

remind we with google calendar

 

March 2024

SU MO TU WE TH FR SA
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
Submit an Event