MSE Seminar: Dr. Ismail El Baggari, Harvard University

Monday, February 26, 2024
2:00 p.m.-3:30 p.m.
Kay Boardrooms Room 1111, Kim Engineering Bldg.
Sherri Tatum
301 405 5240

Cryogenic Electron Microscopy of Quantum Matter

Abstract: Quantum-mechanical effects and strong electron-electron interactions give rise to solids with superb electronic properties and a vast potential for future technologies. In many of these strongly interacting materials, electrons self-organize into new spatial patterns that break the symmetry of the underlying crystal. A grand challenge in the field is to understand the nature of these symmetry-breaking states and to overcome their tendency to form inhomogeneous textures at the nanoscale. Towards that goal, atomic-resolution transmission electron microscopy techniques hold immense promise for advancing quantum materials research; however, progress has been hindered by the lack of low-temperature capabilities that are necessary to study quantum systems.

Here I will show vivid atomic-scale visualizations of electronic order in strongly correlated oxides unleashed by the development of cryogenic scanning transmission electron microscopy (cryo-STEM). This novel technique enables direct visualizations of (i) the picoscale atomic displacements governing electronic transitions in quantum materials, (ii) the nature and symmetry of charge/orbital order, and (iii) a complex nanoscale landscape involving topological defects, phase competition, and inhomogeneity. Finally, I will describe our recent and unique approach that has enabled cryogenic electron microscopy with liquid helium cooling and atomic resolution. These capabilities pave the way for novel explorations of ultra-low temperature quantum phenomena in the electron microscope.

Bio: Ismail El Baggari is a Principal Investigator and Fellow at the Rowland Institute at Harvard. He obtained his Ph.D. and M.S. in Physics from Cornell University working with the late Prof. Lena Kourkoutis and a Bachelor of Science in Applied Physics from Yale University. His research focuses on the development of in situ cryogenic electron microscopy for understanding quantum materials and devices.

Audience: Graduate  Undergraduate  Faculty 

remind we with google calendar


April 2024

31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
Submit an Event