Peer Reviewed Journal Articles - Solid Oxide Fuel Cell (SOFC) Technology:
255. “Evaluating the Potential of Low-Temperature SOFCs at Elevated pO2,” S.A. Horlick, Y-L. Huang, N.B. Johnson, A.P. Lam, I.A. Robinson, and E.D. Wachsman, Nature Energy, submitted
254. “High-Power Low-Temperature Bilayer Electrolyte SOFC,” A. Pesaran, A. M. Hussain, Y. Ren, X. Zhang, and E. D. Wachsman, Joule, submitted
253. “High Performance PtNi Nanowire Catalysts as Cathode Surface Modifiers for Suppressing Cation Segregation in Low Temperature Solid Oxide Fuel Cells,” H. Kareem, Y. Lee, M. Saqib, D. Tran, A. Alexandrova, E.D. Wachsman, and D. Baker, ACS Catalysis, submitted
252. “Optimizing Bilayer Electrolyte Thickness Ratios for High Performing Low-Temperature Solid Oxide Fuel Cells,” A. Pesaran, A. M. Hussain, Y. Ren, and E. D. Wachsman, Journal Electrochemical Society, 171, 054503 (2024)
251. “Optimization of SOFC Anode Microstructure for Performance and Highly Scalable Cells Through Graded Porosity,” Y. Ostrovskiy, M. Saqib, J. Hong, W. Schubert, and E. D. Wachsman, Journal Electrochemical Society, 171, 044509 (2024)
248. “Lowering the Temperature of Solid Oxide Electrochemical Cells using Triple-doped Bismuth Oxides,” H. Yu, I. Jeong, S. Jang, D. Kim, H-N. Im, C-W. Lee, E.D. Wachsman, and K. T. Lee, Advanced Materials, 2306205 (2023) DOI: 10.1002/adma.202306205
247. “Physiochemical Analysis of Infiltrated Cathode Symmetric Cells for Intermediate Temperature SOFCs,” J. Hong, H. Bae, J. Park, S-J. Song, and E.D. Wachsman, Electrochimica Acta, DOI:10.1016/j.electacta.2023.143329 (2023)
240. “Enhancing Low-Temperature SOFC Performance and Durability via Surface Modification,” I.A. Robinson, Y.-L. Huang, S.A. Horlick, A. M. Hussain, A. Pesaran, and E.D. Wachsman, Electrochimica Acta, 442, 141881 (2023).
231. “High Performance SrFe0.2Co0.4Mo0.4O3-δ Ceramic Anode Supported Low-Temperature SOFCs,” K-J. Pan,Y-L. Huang, A. M. Hussain, and E.D. Wachsman, Journal of The Electrochemical Society, 168, 114503(2021)
230. “Catalyst-Exsolving Anode-Supported Low-Temperature Solid Oxide Fuel Cell,” S. Horlick,Y-L Huang, I.A. Robinson, and E.D. Wachsman, Journal of The Electrochemical Society, 168, 094503 (2021) doi.org/10.1149/1945-7111/ac25a7
219. “Highly Durable, Surface Modified SOFCs Running on Hydrocarbon Fuels at 600°C,”A. M. Hussain, I. A. Robinson, Y-L. Huang, K-J. Pan, and E.D. Wachsman, Journal of the Electrochemical Society, 167, 104509 (2020).
215. “A Redox-Robust Ceramic Anode-Supported Low-Temperature Solid Oxide Fuel Cell,”A. M. Hussain, Y-L. Huang, K-J. Pan, I. A. Robinson, X. Wang, and E. D. Wachsman, ACS Applied Materials & Interfaces, doi.org/10.1021/acsami.0c01611 (2020).
211. “Evolution of Solid Oxide Fuel Cells via Fast Interfacial Oxygen Crossover,“ K-J. Pan, A. M. Hussain, Y-L. Huang, Y. Gong, G. Cohn, D. Ding, and E. D. Wachsman, ACS Applied Energy Materials, 2, 4069-4074 (2019).
206. “Development of a New Ceria/Yttria-Ceria Double-Doped Bismuth Oxide Bilayer Electrolyte Low-Temperature SOFC with Higher Stability,” A. Pesaran, A. Jaiswal, Y. Ren, and E.D. Wachsman, Ionics, 25, 3153-3164 (2019).
204. “Liquids-to-Power Using Low Temperature Solid Oxide Fuel Cells,“ A. M. Hussain and E. D. Wachsman, Energy Technology, 7, 20-32 (2019).
203. “Progress Towards Direct Liquid-Fed Low Temperature Solid Oxide Fuel Cells,“ S. Ha and E. D. Wachsman, Energy Technology, 7, 3-4 (2019)
199. “Highly Performing Chromate-Based Ceramic Anodes (Y0.7Ca0.3Cr1-xCuxO3-d) for Low Temperature Solid Oxide Fuel Cells,“ A. M. Hussain, K.J. Pan, Y-L. Huang, I.A. Robinson, C. Gore, and E. D. Wachsman, ACS Applied Materials & Interfaces, 10, 36075-36081 (2018).
198. “Nanointegrated, High-Performing Cobalt-Free Bismuth-Based Composite Cathode for Low Temperature Solid Oxide Fuel Cells,“ Y-L. Huang, A. M. Hussain, I.A. Robinson, and E. D. Wachsman, ACS Applied Materials & Interfaces, 10, 28635-28643 (2018).
193. “Improved Sulfur Tolerance of SOFCs through Surface Modification of Anodes,“ T. Hays, A. M. Hussain, Y-L. Huang, D. W. McOwen, and E. D. Wachsman, ACS Applied Energy Materials, 1, 1559-1566 (2018).
192. “Nanoscale Cathode Modification for High Performance and Stable Low-Temperature Solid Oxide Fuel Cells (SOFCs),“ Y-L. Huang, A. M. Hussain, and E. D. Wachsman, Nano Energy, 49, 168-192 (2018).
178. Durability of (La0.8Sr0.2)0.95MnO3-δ-(Er0.2Bi0.8)2O3 composite cathodes for low temperature SOFCs,Albert S. Painter, Yi-Lin Huang, Eric D. Wachsman, Journal of Power Sources, Volume 360, pp. 391-398, (2017), https://doi.org/10.1016/j.jpowsour.2017.06.018.
166. “Stannate-based Ceramic Oxide as Anode Materials for Oxide-ion Conducting Low-Temperature Solid Oxide Fuel Cells,” A.M. Hussain, K.-J. Pan, I. Robinson, T. Hays, and E.D. Wachsman, Journal of the Electrochemical Society, 163, F1198-F1205 (2016)
152. “Rational Design of Lower Temperature Solid Oxide Fuel Cell Cathodes via Nano-tailoring of Co-assembled Composite Structures,” K.T. Lee, A.A. Lidie, H.S. Yoon, and E.D. Wachsman, Angewandte Chemie, 53, 13463-13467 (2014) DOI: 10.1002/anie.201408210
148. “Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices,” S.R. Bishop, D. Marrocchelli, C. Chatzichristodoulou, N.H. Perry, M.B. Mogensen, H.L. Tuller, and E.D. Wachsman, Annual Reviews of Materials Research, 44:6.1-6.35 (2014).
143. “Performance of La0.1Sr0.9Co0.8Fe0.2O3-d and La0.1Sr0.9Co0.8Fe0.2O3-d-Ce0.9Gd0.1O2 Oxygen Electrodes with Ce0.9Gd0.1O2 Barrier Layer in Reversible Solid Oxide Fuel Cells,” M.-B. Choi, B. Singh, E. D. Wachsman, and S.-J. Song, Journal of Power Sources, 239, 361-373 (2013).
138. "Feasibility of Low Temperature Solid Oxide Fuel Cells Operating on Reformed Hydrocarbon Fuels" K.T. Lee, C.M. Gore, and E. D. Wachsman, Journal of Materials Chemistry, 22, 22405-22408 (2012).
137. “Electrochemical Properties of Ceria-Based Intermediate Temperature Solid Oxide Fuel Cells Using Microwave Heated La0.1Sr0.9Co0.8Fe0.2O3-d as a Cathode,” M.-B. Choi, K.-T. Lee, H.-S. Yoon, S.-Y. Jeon, E. D. Wachsman, and S.-J. Song, Journal of Power Sources, 220, 377-382 (2012).
134."The Evolution of Low Temperature Solid Oxide Fuel Cells,” K. T. Lee, H. S. Yoon, and E. D. Wachsman, Journal of Materials Research, 27, 2063-2078 (2012) - Invited Feature Paper.
133."Interfacial Modification of La0.80Sr0.20MnO3-d - Er0.4Bi0.6O3 Cathodes for High Performance Lower Temperature Solid Oxide Fuel Cells,” K. T. Lee, D.W. Jung, H. S. Yoon, A.A. Lidie, M.A. Camaratta, and E. D. Wachsman, Journal of Power Sources, 220, 324-330 (2012).
129."Role of Solid Oxide Fuel Cells in a Balanced Energy Strategy,” E. D. Wachsman, C. A. Marlowe and K. T. Lee, Energy and Environmental Science, 5, 5498-5509 (2012) DOI:10.1039/c1ee02445k - Invited Analysis.
123."Lowering the Temperature of Solid Oxide Fuel Cells,” E. D. Wachsman and K. T. Lee, Science, 334, 935-939 (2011) - Invited Review.
105. "Dependence of Open-Circuit Potential and Power Density on Electrolyte Thickness in Solid Oxide Fuel Cells with Mixed Conducting Electrolytes," K. L. Duncan, K. T. Lee, and E. D. Wachsman, Journal of Power Sources, 196, 2445-2451 (2011).
102. “Effect of La2Zr2O7 on Interfacial Resistance in Solid Oxide Fuel Cells,” A. Chen, J. Smith, K. Duncan, R.T. DeHoff, K. Jones, and E. D. Wachsman, Journal of the Electrochemical Society, 157, B1624-B1628 (2010).
94. “Development of High Performance Ceria/Bismuth Oxide Bilayered Electrolyte SOFCs for Lower Temperature Operation,” J. S. Ahn, M. A. Camaratta, D. Pergolesi, K. T. Lee, H. Yoon, B. W. Lee, D. W. Jung, E. Traversa and E. D. Wachsman, Journal of The Electrochemistry Society, 157, B376-382 (2010).
93. “Isotopic-Switching Analysis of Oxygen Reduction in Solid Oxide Fuel Cell Cathode Materials,” C. C. Kan and E. D. Wachsman, Solid State Ionics, 181, 338-347 (2010).
89. “Performance of Anode Supported SOFC using Novel Ceria Electrolyte,” J. S. Ahn, S. Omar, H. Yoon, J. C. Nino, and E. D. Wachsman, Journal of Power Sources, 195, 2131-2135 (2009).
88. “Performance of IT-SOFC with Ce0.9Gd0.1O0.1.95 Functional Layer at the Interface of Ce0.9Gd0.1O0.1.95 Electrolyte and Ni- Ce0.9Gd0.1O0.1.95 Anode,” J. S. Ahn, H. Yoon, K. T. Lee, M. Camaratta, and E. D. Wachsman, Fuel Cells, 9, 643-649 (2009).
81. “Continuum - Level Analytical Model for Solid Oxide Fuel Cells with Mixed Conducting Electrolytes,” K. L. Duncan and E. D. Wachsman, Journal of the Electrochemical Society, 156, B1030-1038 (2009).
79. “High-Performance Bilayered Electrolyte Intermediate Temperature Solid Oxide Fuel Cells,” J. S. Ahn, D. Pergolesi, M. A. Camaratta, H. Yoon, B. W. Lee, E. Traversa and E. D. Wachsman, Electrochemistry Communications, 11, 1504-1507 (2009).
73. “Evaluation of the Relationship Between Cathode Microstructure and Electrochemical Behavior for SOFCs,” J.R. Smith, A. Chen, D. Gostovic, D. Hickey, D. Kundinger, K.L. Duncan, R.T. DeHoff, K.S. Jones and E.D. Wachsman, Solid State Ionics, 180, 90-98 (2009).
72. “Impedance Studies on Bismuth-Ruthenate-Based Electrodes,” A. Jaiswall and E.D. Wachsman, Ionics, 15, 1-9 (2009).
59. “High Performance Composite Bi2Ru2O7 - Bi1.6Er0.4O3 Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” M. Camaratta and E.D. Wachsman, Journal of the Electrochemical Society, 155, B135-142 (2008).
58. “Higher Ionic Conductive Ceria Based Electrolytes for SOFCs,” S. Omar, E. D. Wachsman, and J. C. Nino, Applied Physics Letters, 91, 1444106 (2007).
57. “Three-Dimensional Reconstruction of Porous LSCF Cathodes,” D. Gostovic, J.R. Smith, K.S. Jones and E.D. Wachsman, Electrochemical and Solid State Letters, 10, B214-217 (2007).
55. “Silver-Bismuth Oxide Cathodes for IT-SOFCs; Part II – Improving Stability Through Microstructural Control,” M. Camaratta and E.D. Wachsman, Solid State Ionics, 178, 1411-1418 (2007).
54. “Silver-Bismuth Oxide Cathodes for IT-SOFCs; Part I – Microstructural Instability,” M. Camaratta and E.D. Wachsman, Solid State Ionics, 178, 1242-1247 (2007).
49. “Bismuth Ruthenate – Stabilized Bismuth Oxide Composite Cathodes for IT-SOFCs,” A. Jaiswall, C.T. Hu, and E.D. Wachsman, Journal of the Electrochemical Society, 154, B1088-1094 (2007).
39. “Stable and High Conductivity Bilayered Electrolytes for Lower Temperature Solid Oxide Fuel Cells,” J.Y. Park and E.D. Wachsman, Ionics, 12-1, 15-20 (2006).
37. “Effect of Harsh Anneals on the LSM/YSZ Interfacial Impedance Profile,” J. R. Smith and E. D. Wachsman, Electrochimica Acta, 51, 1585-91 (2006).
28. “Bismuth-Ruthenate-Based Cathodes for IT-SOFCs,” A. Jaiswal and E.D. Wachsman, Journal of the Electrochemical Society, 152, A787-790 (2005).
27. “Preparation and Characterization of Lead Ruthenate Based Composite Cathodes for SOFC Applications,” V. Esposito, E. Traversa, and E.D. Wachsman, Solid State Ionics-2004, Materials Research Society, P. Knauth, C. Masqulier, E. Traversa, and E.D. Wachsman, Ed., 835, 217-222 (2005).
Top